تخصیص آب با استفاده از مدل شکار- شکارچی و مقایسه آن با روش‌های مرسوم حل اختلاف (مطالعه موردی: حوضه آبریز اترک)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی منابع آب، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 استادیار گروه مهندسی منابع آب، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

تخصیص منابع آب بین ذی‌مدخلان مختلف از مسائل مطرح در حوضه‌های آبریز در سطح ملی و بین‌المللی است. با وجود تحقیقات گسترده انجام شده در زمینه تخصیص منابع آب، هنوز نیاز به روشی که به‌صورت عادلانه و پایدار منابع آب را به ذینفعان تخصیص دهد، وجود دارد. در دهه‌های اخیر، روش‌های ریاضی مانند روش چانه‌زنی نش، سطح یکنواخت، خسارت متعادل و کالای اشمورودینسکی برای مسائل حل اختلاف به‌کارگرفته شده که به‌طور کلی در دسته روش‌های بهینه‌سازی جا دارند و در نهایت به یک جواب واحد منتهی می‌شوند. در این مطالعه برای اولین بار یک راه حل ریاضی موسوم به معادله شکار-شکارچی برای حل اختلاف در زمینه تخصیص آب کشاورزی پیشنهاد شد. مزیت اصلی روش پیشنهادی تخصیص متعادل آب بین ذی‌مدخلان در راستای توسعه پایدار در منطقه است که در طول سری زمانی، سود ذینفعان را محاسبه نموده و اثرگذاری آنها نسبت به یکدیگر را نشان می‌دهد. این مدل برای تخصیص منابع آب حوضه آبریز اترک در شمال شرق ایران که در حال حاضر با مشکل حاد تنش آبی مواجه است، به‌کار گرفته شد. مقایسه روش پیشنهادی با روش‌های بهینه‌سازی حل اختلاف بر روی این حوضه، بیانگر کارایی مدل در ارائه پاسخ‌های پویا و دینامیکی به‌جای حل واحد است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using the Prey-Predator Equation for the Water Allocation Problem and Its Comparison with Conventional Water Allocation Methods, A Case Study of The Atrak River Basin

نویسندگان [English]

  • Parvaneh Kazemi Meresht 1
  • Shahab Araghinejad 2
1 PhD Student of Water Resources Management, College of Agriculture and Natural Resources, University of Tehran
2 Ass. Prof. of Water Resources Management, College of Agriculture and Natural Resources, University of Tehran
چکیده [English]

Allocating the water resources in a basin to several stakeholders is a common issue at both national and international levels. Despite the many extensive studies carried out on the water allocation problem, a method still needs to be developed for the equitable and sustainable allocation of water to all the stakeholders in a shared basin. Over the last few decades, a number of mathematical methods such as the Nash bargaining, area monotonic, equal loss, and Kalai-Smorodinsky solutions have been applied to the problem of conflict resolution that are collectively known as optimization methods, each one yielding a single solution. In this study, a novel mathematical model based on the prey-predator equation is employed for water allocation to resolve conflicts among stakeholders in the agricultural sector. The advantage of the proposed model lies in its capability to calculate balanced allocation of irrigation water to stakeholders aimed at the sustainable development of the region. The model calculates the stakeholders’ profits and payoffs and determines their interactions in a time series. Finally, the model is employed for resolving conflicts in the Atrak River basin in the northeast of Iran which is now facing a serious water tension. Comparison of the results obtained from the proposed model and those from four conventional conflict resolution methods applied to the same basin implies the superiority of the proposed model in yielding dynamic solutions rather single ones.

کلیدواژه‌ها [English]

  • Water allocation
  • Conflict Resolution
  • Optimization Methods
  • Prey-Predator Model
  • Atrak Basin
1. Nandalal, K., and Simonovic, S.P. (2002). “State-of-the-art report on systems analysis methods for resolution of conflicts in water resources management.” Department of Civil and Environmental Engineering, The University of Western Ontario.

2. Wolf, A.T., Kramer, A., Carius, A., and Dabelko, G.D. (2005). Managing water conflict and cooperation, State of the World Redefining Global Security, Orgon State University, Oregon, USA.

3. Rogers, P. (1969). “A game theory approach to the problems of international river basins.” Water Resources Research, 5(4), 749-760.

4.  Kucukmehmetoglu, M., and Guldmann, J.-M. (2004). “International water resources allocation and conflicts: The case of the Euphrates and Tigris.” Environment and Planning, 36(5), 783-802.

5. Parrachino, I., Dinar, A., and Patrone, F. (2006). “Cooperative game theory and its application to natural, environmental, and water resource issues: 3. application to water resources.” World Bank Policy Research Working Paper, No. 4073.

6. Madani, K., and Hipel, K.W. (2007). “Strategic insights into the Jordan River conflict.” In Proceeding of the 2007 world Environmental and Water Resources Congress, American Society of Civil Engineers, Tampa, Florida.

7. Zarezadeh, M. (2010). “Water resource allocation under climate change using bankruptcy in conflict resolution.” MS Thesis, Tarbiat Modares University, Iran.

8. Daneshyazdi, M. (2011). “Conflict resolution of water resource allocations using the game theory approach: The case of Orumieh River basin.” MSc Thesis, Sharif University of Technology, Tehran. (In Persian)

9. Frisvold, G.B., and Caswell, M.F. (2000). “Transboundary water management Game‐theoretic lessons for projects on the US–Mexico border.” Agricultural Economics, 24(1), 101-111.

10. Coppla, E., et al., (2001). “Balancing risk with water supply for a public wellfield.” J. Water Res. Plann. Manage. Div. Am. Soc. Civ. Eng, 126(2), 1-36.

11. Raquel, S., et al. (2007). “Application of game theory for a groundwater conflict in Mexico.” J. of Environmental Management, 84(4), 560-571.

12. Salazar, R., Szidarovszky, F., and Rojano, A. (2010). “Water distribution scenarios in the Mexican Valley.” Water Resources Management, 24(12), 2959-2970.

13. Lotka, A.J. (1910). “Contribution to the theory of periodic reactions.” The Journal of Physical Chemistry, 14(3), 271-274.

14. Lotka, A.J.(1925). Elements of physical biology, Williams and Wilkins, Balimore, MD.

15. Volterra, V. (1926). “Fluctuations in the abundance of a species considered mathematically.” Nature, 118, 558-560.

16. Velupillai, K. (1979). “Some stability properties of Goodwin's growth cycle.” J. of Economics, 39(3),
245-257.

17. Kazemi, P., and Araghinejad, S. (2013). “A novel water resource allocation model comparing with the conflict resolution method.” International Proc. of  Chemical, Biological and Environment, Academic, J. of Tehran University, Vol. 55, pp. 6.

18. Engineering, M.G.C. (2012). Water resource planning report of Atrak basin, UK.

19. Engineering, M.G.C. (2012). Agricultural economics report, UK.

20. http://www.lindo.com/. (May 2014).

21. Schrage, L. (2002). Optimization modeling with LINGO®, Lindo System Inc., USA.

22. Eberlein, R. L. (2002). “Vensim® PLE Software (5.2 a). Ventana Systems.” Inc.: Harvard, MA.