بررسی قابلیت جذب کامپوزیت نانوالیاف پلی‌اکریلویتریل-اُکسیدآهن عامل‌دار شده با 2-آمینو3- متیل-1- هگزانتییل در حذف یون توریم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استاد و عضو هیئت علمی پژوهشگاه علوم و فنون هسته‌ای، پژوهشکده مواد و چرخه سوخت هسته‌ای، تهران، ایران

3 استاد و عضو هیئت علمی گروه مهندسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

4 دانشیار و عضو هیئت علمی پژوهشگاه علوم و فنون هسته‌ای، پژوهشکده مواد و چرخه سوخت هسته‌ای، تهران، ایران

چکیده

در این پژوهش به بررسی قابلیت جذب کامپوزیت نانوالیاف پلی اکریلو نیتریل- نانو ذرات اُکسید آهن (PAN/Fe- ONPs) عامل‌دار شده با 2-آمینو 3-متیل-1-هگزانتییل (AMH) در حذف یون توریم ((Th4+ از محلول‌های آبی به‌صورت ناپیوسته پرداخته شد. جاذبPAN/Fe-ONPs/AMH با ترکیب دو روش هیدروترمال و الکتروریسی سنتز شد و ساختار ومورفولوژی آن توسط آنالیزهایXRD، XRF، SEM، BET و FTIR مورد بررسی قرار گرفت. اثر سه متغیر مستقل شامل pH محلول، غلظت اولیه محلول یون‌های توریم و زمان تماس با استفاده از روش سطح پاسخ (RSM) بر پایه طرح مرکب مرکزی (CCD) با 8 نقطه مکعبی، 6 نقطه محوری و 6 نقطه تکرار مورد ارزیابی قرار گرفت. شاخص‌های برازندگی آماری (به‌عنوان مثال، جدول ANOVA، ضریب تعیین، آزمون عدم برازش و مقادیر P) نشان داد که مدل تبیینی از مقبولیت لازم برخوردار است. نتایج بهینه‌سازی نشان داد که درصد جذب توریم (IV) در دمای 25 درجه سلسیوس تحت شرایط بهینه (pH برابر با 7/5، غلظت اولیه 2/23 میلی‌گرم در لیتر محلول توریم و زمان تماس 8/67 دقیقه) برابر 01/98 درصد است. نتایج مدل‌سازی نشان داد که داده‌های تجربی سینتیک جذب توریم، به‌وسیله مدل سینتیکی شبه مرتبه دوم بهتر برازش می‌شوند و همچنین همدمای لانگمیر داده‌های تجربی تعادلی جذب را به‌خوبی توصیف می‌کند. حداکثر ظرفیت جذب PAN/Fe- ONPs/AMH برای توریم 472 میلی‌گرم در گرم تخمین زده شد. یون توریم جذب شده به‌راحتی با استفاده از ترکیب محلول نیتریک و کلریک اسید بازیابی شد و جاذب
PAN/Fe- ONPs/AMH بدون کاهش قابل توجه در ظرفیت جذب مجدداً مورد استفاده قرار گرفت. بازیابی با استفاده از ترکیب محلول نیتریک و کلریک اسید با نسبت به‌ترتیب 4/0 و 2/0 مولار نشان ‌داد که بعد از 5 مرحله جذب-واجذب، ظرفیت جذب PAN/Fe-ONPs/AMH حدود 5/7 درصد کاهش می‌یابد. مطابق نتایج، جاذب PAN/Fe-ONPs/AMH از قابلیت بالایی در جذب و واجذب یون توریم برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Polyacrylonitrile/Iron Oxide Nanofiber Adsorbent Modified with 2-Amino-3-Methyl- 1-Hexanethiol for the Adsorption of Th4+ Ion

نویسندگان [English]

  • Babak Rouhi Broujeni 1
  • Abdolreza Nilchi 2
  • Amirhesam Hasani 3
  • Reza Saberi 4
1 PhD Student of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Prof., Faculty Member of Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 Prof. of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Assist. Prof. Faculty Member of Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
چکیده [English]

In this study, novel polyacrylonitrile/iron nano oxide (PAN/Fe-ONPs) nanofiber adsorbent modified with 2-Amino-3-methyl-1-hexanethiol (AMH) was synthesized by combination of hydrothermal and electrospinning method and evaluated as an adsorbent for removing thorium (IV) (Th4+) ion from aqueous solution. The PAN/Fe-ONPs/AMH was characterized by X-ray diffraction (XRD), Fourier Transform Infra-Red (FT-IR), Scanning Electron Microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET). Response Surface Methodology (RSM) was utilized in the optimization of Th4+ adsorption for parameters such as pH, the initial metal ion concentration (Th4+ concentration) and contact time. For this purpose, the central composite design (CCD) with a predictive quadratic model was applied with 8 cubic points, 6 pivot points and 6 replicates at the center. The statistical measures (i.e., Analysis of variance (ANOVA), R2, the lack of fit test and the P value) specify that the developed model is proper. The results of optimization showed that the adsorption percentage of PAN/Fe-ONPs/AMH for Th4+ under optimal conditions (pH=5.7, initial concentration 232 mgL-1 and contact time=67.8 min) was 98% at 25oC. In addition, the adsorption kinetics was well defined by the pseudo second-order equation, while the Langmuir model better fit the adsorption isotherms. The adsorption capacity of PAN/Fe-ONPs/AMH was 472 mg Th4+g-1 composite. The loaded Th4+ can be easily regenerated with HNO3/HCl and the PAN/Fe-ONPs/AMH could be used repeatedly without any significant reduction in its adsorption capacity. Adsorbent recovery by using 0.4M HNO3/0.2M HCl solution for adsorbent reuse indicated that the PAN/Fe-ONPs/AMH adsorption capacity for Th4+ was decreased by about 7.5%.

کلیدواژه‌ها [English]

  • Adsorption
  • Th4+
  • 2-Amino-3-methyl-1-hexanethiol
  • PAN/Fe-ONPs Nanofiber
  • Hydrothermal
  • Electrospinning
Aydin, F. A. & Soylak, M. 2007. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta, 73, 134-141.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
Broujeni, B. R., Nilchi, A., Hassani, A. & Saberi, R. 2018. Comparative adsorption study of Th4+ from aqueous solution by hydrothermally synthesized iron and aluminum oxide nanoparticles. International Journal of Environmental Science and Technology, doi: 1007/513762-018-1824-6.
Dastbaz, A. & Keshtkar, A. R. 2014a. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Applied Surface Science, 293, 336-344.
Dastbaz, A. & Keshtkar, A. R. 2014b. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Applied Surface Science, 293, 336-344.
Deng, S., Bai, R. & Chen, J. P. 2003. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir, 19, 5058-5064.
Dietz, M. L., Horwitz, E. P., Sajdak, L. R. & Chiarizia, R. 2001. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta, 54, 1173-1184.
Douglas, C. M. 2009. Design and analysis of experiments, Wiley, NY.
Guo, Z.-J., Yu, X.-M., Guo, F.-H. & Tao, Z.-Y. 2005. Th (IV) adsorption on alumina: effects of contact time, pH, ionic strength and phosphate. Journal of Colloid and Interface science, 288, 14-20.
Höllriegl, V., Greiter, M., Giussani, A., Gerstmann, U., Michalke, B., Roth, P. & Oeh, U. 2007. Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil. Journal of Environmental Radioactivity, 95, 149-160.
Humelnicu, D., Drochioiu, G. & Popa, K. 2004. Bioaccumulation of thorium and uranyl ions on Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry, 260, 291-293.
Ilaiyaraja, P., Deb, A. K. S., Sivasubramanian, K., Ponraju, D. & Venkatraman, B. 2013. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. Journal of Hazardous Materials, 250, 155-166.
Jain, V., Pandya, R., Pillai, S. & Shrivastav, P. 2006. Simultaneous preconcentration of uranium (VI) and thorium (IV) from aqueous solutions using a chelating calix [4] arene anchored chloromethylated polystyrene solid phase. Talanta, 70, 257-266.
Jiang, H., Wu, C., Zhang, A. & Yang, P. 1987. Structural characteristics of polyacrylonitrile (PAN) fibers during oxidative stabilization. Composites Science and Technology, 29, 33-44.
Jung, Y., Kim, S., Park, S.-J. & Kim, J. M. 2008. Application of polymer-modified nanoporous silica to adsorbents of uranyl ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313,
162-166.
Kampalanonwat, P. & Supaphol, P. 2010. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Applied Materials and Interfaces, 2, 3619-3627.
Kuhu, A. 1972. Electrochemistry of cleaner environments, Plenum Press, New York.
Langmuir, D. & Herman, J. S. 1980. The mobility of thorium in natural waters at low temperatures. Geochimica et Cosmochimica Acta, 44, 1753-1766.
Lee, S., Kim, J., Ku, B.-C., Kim, J. & Joh, H.-I. 2012. Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Advances in Chemical Engineering and Science, 2, 275-282.
Liu, J., Luo, M., Yuan, Z. & Ping, A. 2013. Synthesis, characterization, and application of titanate nanotubes for Th (IV) adsorption. Journal of Radioanalytical and NuclearChemistry, 298, 1427-1434.
Mohan, D. & Pittman JR, C. U. 2006. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762-811.
Mokhtari, M. & Keshtkar, A. R. 2016a. Removal of Th (IV), Ni (II) and Fe (II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Research on Chemical Intermediates, 42, 4055-4076.
Mokhtari, M. & Keshtkar, A. R. 2016b. Removal of Th (IV), Ni (II) and Fe (II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Research on Chemical Intermediates, 42, 4055-4076.
Moradi, G., Dabirian, F., Mohammadi, P., Rajabi, L., Babaei, M. & Shiri, N. 2017. Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: characterization and process optimization by response surface methodology. Chemical Engineering Research and Design, 129, 182-196.
Moradi, G., Dabirian, F., Mohammadi, P., Rajabi, L., Babaei, M. & Shiri, N. 2018. Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: Characterization and process optimization by response surface methodology. Chemical Engineering Research and Design, 129, 182-196.
Nazari, K., Maragheh, M. G. & RAD, A. J. 2004. Studies on extraction of uranium from phosphoric acid using PN-1200 extractant. Hydrometallurgy, 71, 371-377.
Nilchi, A., Dehaghan, T. S. & Garmarodi, S. R. 2013. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination, 321, 67-71.
Nilchi, A., Saberi, R., Garmarodi, S. R. & Bagheri, A. 2012. Evaluation of PAN-based manganese dioxide composite for the sorptive removal of cesium-137 from aqueous solutions. Applied Radiation and Isotopes, 70, 369-374.
Prasada Rao, T., Metilda, P. & Mary Gladis, J. 2006. Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination: an overview. Talanta, 68, 1047-1064.
Rahmati, A., Ghaemi, A. & Samadfam, M. 2012. Kinetic and thermodynamic studies of uranium (VI) adsorption using Amberlite IRA-910 resin. Annals of Nuclear Energy, 39, 42-48.
Saeed, K., Haider, S., OH, T.-J. & Park, S.-Y. 2008. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. Journal of Membrane Science, 322, 400-405.
Saifuddin, M. & Kumaran, P. 2000. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8, 43-53.
Savvin, S. 1961. Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta, 8, 673-685.
Trinh, T. K. & Kang, L.-S. 2010. Application of response surface method as an experimental design to optimize coagulation tests. Environmental Engineering Research, 15, 63-70.
Vijayan, P., Dulera, I., Krishnani, P., Vaze, K., Basu, S. & Sinha, R. 2016. Overview of the thorium programme in India. Revol, J. P., Bourquin, M., Kad, Y., Lillestol, E., de Mestral, J.C. & Samec, K. (Eds) In: Thorium Energy for the World, Springer, Cham.
Wu, Y., Kim, S.-Y., Tozawa, D., Ito, T., Tada, T., Hitomi, K., et al. 2012. Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. Journal of Nuclear Science and Technology, 49, 320-327.
Yari, S., Abbasizadeh, S., Mousavi, S. E., Moghaddam, M. S. & Moghaddam, A. Z. 2015. Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 94, 159-171.
Yari, S., Abbasizadeh, S., Mousavi, S. E., Moghaddam, M. S. & Moghaddam, A. Z. 2015. Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 94, 159-171.
Zhang, L., Aboagye, A., Kelkar, A., Lai, C. & Fong, H. 2014. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 49, 463-480.
Zhou, F. L. & Gong, R. H. 2008. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polymer International, 57, 837-845.